Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper proposes a novel strategy to enhance dynamic stability of turning processes. It presents a novel assistive strategy, which combines Spindle Speed Variation (SSV) and Sinusoidal Tool Modulations to dramatically improve chatter stability of high-speed turning. Chatter vibrations are a type of self-exiting vibrations that originate due to the dynamic flexibilities in the machine/workpiece/tool. Once chatter is triggered, it rapidly grows to destroy the surface finish, harms the tool and even the machine tool components. Chatter is the most limiting factor restricting productivity and attenable material removal rates (MRR) in most high-speed turning operations. A well-known strategy to improve chatter stability in turning is to use SSV. Continuously varying the spindle speed helps disturb and weaken the regenerative effect (regenerations) and thus improve chatter stability. Most recently, it is also reported that adding sinusoidal tool modulations also help improve chatter stability. This process is called the modulated turning (MT), and sinusoidal tool modulations cause the tool to disengage from the workpiece (cut) repeatedly introducing time for the regeneration effect to die out. This paper, for the first time, proposes to utilize sinusoidal tool modulations and SSV at the same time to assist and improve chatter stability of turning even further. The semi-discrete time domain approach is utilized to analyze chatter stability of this newly created turning process. It is observed, that jointly using tool modulations and SSV provides greater asymptotic chatter stability margins enabling average 10∼20% greater material removal rates to be achieved. Furthermore, it modifies existing stability lobes and helps create additional lobes, which may be utilized to maximize material removal rate at other desired target spindle speeds. Overall, joint application of SSV and tool modulations provide greater stability in turning.more » « less
-
Budak, Erhan (Ed.)This paper presents a generalized cutting force and regenerative chatter stability prediction for the modulated turning (MT) process. Uncut chip thickness is modeled by considering current tool kinematics and undulated (previously generated) surface topography for any given modulation condition in the feed direction. It is found that chip formation is governed by the undulated surface generated in multiple past spindle rotations. Uncut chip thickness is computed analytically in the form of trigonometric functions, and cutting forces are predicted by making use of orthogonal cutting mechanics. Regenerative chatter stability of the process is also modelled. Analytical semi-discretization-based solution is developed to accurately predict the stability lobe diagrams (SLDs) of the MT process. Predicted stability lobes are validated through numerical time-domain simulations and experimentally via orthogonal (plunge) turning tests. It is found that as compared to conventional single-point continuous turning, regenerative stability of MT exhibits multiple (3) regenerative delay loops and long out-of-cut duration in-between tool engagement stabilizes the process to reach up to 2x higher stable widths/depths as compared to the conventional continuous turning.more » « less
-
Friction is one of the key factors limiting the achievable productivity and efficiency in most machining processes. Typically, adverse effects of friction in machining has been addressed through better tool material design and use of coolants. This paper presents an innovative technique to significantly increase the efficiency of turning processes by alleviating friction forces using an assistive device. As opposed to breaking the cut chip using chip breakers, in the proposed technique, the chip is not broken but pulled using a system to realize a new turning process so-called the “chip-pulling turning”. By pulling the cut chip externally, the friction force acting along tool’s rake face could be reduced and even cancelled. This, in return, increases the shear angle and leads to efficient material removal with significantly lower process forces and energy. An electro-mechanical chip-pulling device is designed that can pull the guided chip continuously during the turning operation. Design of the chip-pulling system, proposed pulling device and its automatic control are presented. The effect of chip-pulling is validated experimentally through various cutting experiments. Furthermore, orthogonal cutting force models are used to model the effect of chip-pulling on the process.more » « less
-
This paper presents a new turning system where the guided cut chip during turning is pulled using an external pulling device to attain high-performance cutting. An electro-mechanical pulling device with sensor-less chip tension monitoring function is designed to steadily pull the guided chip and robustly assist the turning operation. The effect of chip tension on the process is modeled and experimentally verified. The developed chip pulling system is utilized to achieve direct real-time control of the cutting process and zero thrust force cutting is demonstrated. Developed system effectively reduces cutting energy for improved tool life and regulates cutting forces for high performance turning.more » « less
An official website of the United States government

Full Text Available